Vectors

Displacement Vector

The vector which tells how much and in which direction an object has changed its position in a given interval of time is called displacement vector

Addition of Vectors

Triangle Law of Vectors Addition

$$R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

$$\tan \beta = \frac{B \sin \theta}{A + B \cos \theta}$$

Subtraction of Vector

Parallelogram Law of Vectors Addition

$$R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

$$\tan \beta = \frac{B \sin \theta}{A + B \cos \theta}$$

$$R = \sqrt{A^2 + B^2 - 2AB\cos\theta}$$

Resolution of a Vector into Rectangular Components

Horizontal component, $A_x = A \cos \theta$ Vertical component, $A_y = A \sin \theta$

Scalar or Dot Product of Two Vectors

$$A \cdot B = AB \cos \theta$$

Vector or Cross Product of Two Vectors

$$A \times B = AB \sin \left(5 \right)$$